Purely coclosed G <sub>2</sub> ‐structures on nilmanifolds
نویسندگان
چکیده
We classify seven-dimensional nilpotent Lie groups, decomposable or of nilpotency step at most 4, endowed with left-invariant purely coclosed G2-structures. This is done by going through the list all algebras given Gong, providing an example a 3-form φ which pure G2-structure (i.e., it satisfies d ∗ = 0 $d*\varphi =0$ , ∧ $\varphi \wedge d\varphi ) for those that admit them; and showing impossibility having rest them.
منابع مشابه
Invariants of Complex Structures on Nilmanifolds
Let (N, J) be a simply connected 2n-dimensional nilpotent Lie group endowed with an invariant complex structure. We define a left invariant Riemannian metric on N compatible with J to be minimal, if it minimizes the norm of the invariant part of the Ricci tensor among all compatible metrics with the same scalar curvature. In [7], J. Lauret proved that minimal metrics (if any) are unique up to i...
متن کاملA Canonical Compatible Metric for Geometric Structures on Nilmanifolds
Let (N, γ) be a nilpotent Lie group endowed with an invariant geometric structure (cf. symplectic, complex, hypercomplex or any of their ‘almost’ versions). We define a left invariant Riemannian metric on N compatible with γ to be minimal, if it minimizes the norm of the invariant part of the Ricci tensor among all compatible metrics with the same scalar curvature. We prove that minimal metrics...
متن کاملPurely functional data structures
When a C programmer needs an efficient data structure for a particular problem, he or she can often simply look one up in any of a number of good textbooks or handbooks. Unfortunately, programmers in functional languages such as Standard ML or Haskell do not have this luxury. Although some data structures designed for imperative languages such as C can be quite easily adapted to a functional se...
متن کاملTopological Dynamics on Nilmanifolds
There has always been a lack of examples of compact manifolds which are minimal sets under the action of the real line, minimal meaning that each orbit is dense in the manifold. All tori admit such an action and G. A. Hedlund [4] has given examples of 3-manifolds having such an action. The action of a group T on a metric space X is said to be distal if for any two distinct points x, y&X the dis...
متن کاملMinimal Metrics on Nilmanifolds
A left invariant metric on a nilpotent Lie group is called minimal, if it minimizes the norm of the Ricci tensor among all left invariant metrics with the same scalar curvature. Such metrics are unique up to isometry and scaling and the groups admitting a minimal metric are precisely the nilradicals of (standard) Einstein solvmanifolds. If N is endowed with an invariant symplectic, complex or h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Nachrichten
سال: 2023
ISSN: ['1522-2616', '0025-584X']
DOI: https://doi.org/10.1002/mana.202100665